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NONSTEADY SHOCK WAVES IN GAS — LIQUID MIXTURES
OF BUBBLE STRUCTURE

A. A. Gubaidullin, A. I. Ivandaev, UDC 532.593:532.529
and R. I. Nigmatulin

In recent years many theoretical and experimental reports have been published on the investigation of
shock waves in liquids containing gas bubbles [1-11]. The reports on the experimental level are devoted to the
investigation of the structures of compression waves in mixtures with rather large bubbles (~1 mm) [4-6, 9].
Because of the considerable lengths of the relaxation zones for waves in such mixtures (~1 m), comparable

‘with the lengths of the shock tubes, the waves observed in [4-6, 9] were nonsteady, as a rule. This was first
noted in [8], where the necessity of enlisting the nonsteady theory in the analysis of experimental data was
pointed out (up to then only steady wave configurations were studied in the theoretical reports {1, 3-5, 8, 9]).
The propagation of a weak nonsteady wave was first studied in {7] on the basis of the Burgers —Korteweg—de
Vries model equation. The report [10] is devoted to a description of the general approach to the investigation
of nonsteady waves in bubble media. In the present report principal attention is paid to questions of the con-
crete definition of the model of the dynamic behavior of the medium and to a discussion of recent results.

$1. To describe the nonsteady motions of mixtures of liquids and gas bubbles we use the methods of the
mechanics of a continuous medium, assuming that the characteristic linear scales of the flow are much larger
than the sizes of the bubbles and the distances between them. We construct the model of the dynamic behavior
of the mixturc with the following simplifying assumptions:

1. The viscosities and thermal conductivities of the phases are important only in processes of inter-
action between the phases.

2. The bubbles are spherical and monodisperse.

3. Breaking up, collisions, and coagulation of bubbles are abscnt.

4. The velocities of the macroscopic motions of the phases coincide.
5. The density and temperature of the liquid are constant.

Let us discuss assumptions 4 and 5, which are of fundamental interest from the point of view of simplicity
of the solution of concrete problems, in more detail. In sufficiently weak waves the difference in the velocities
of the phases is small and viscous dissipation in the relative translational motion of the liquid and bubbles is
barely noticeable against the background of the dominant thermal dissipation [8]. In stronger waves, when the
noncoincidence of the velocities of the phases is significant, the bubbles break up, as a rule [12]. This leads
toa sharp decrease in the slipping of the phases and to a corresponding decrease in the dissipation due to the
relative motion. With allowance for the effect of the breaking up of bubbles, onecan also study rather strong
waves within the framework of the one-velocity approach.

The assumption of constancy of the liquid temperature is fully justified from the physical point of view,
since the heat capacity of the liquid (per unit volume of the mixture) considerably exceeds the heat capacity of
the gas. The assumption of constancy of the liquid density is applicable if the volume content of bubbles in the
mixture is high enough and the compressibility of the mixture is practically determined by the deformation of

its gaseous component.
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The assumptions that the density and temperature of the liquid are constant allow one to considerably
simplify the problem of the investigation of nonsteady flows of the mixture. This pertains especially to the
assumption that the liquid phase is incompressible, the absence of which complicates the modeling of pro-
cesses of wave propagation, since it then becomes necessary to make a detailed calculation of the radial mo-
tions of individual bubbles, of the fields of all the parameters near them, and of the processes of damping of
the shock discontinuities initiated in the carrier phase,

With the assumptions made, we can write the differential laws of conservation of mass, momentum, and
energy of the mixture in one-dimensional nonsteady motion in the presence of the external force of gravity.
The equations of conservation of mass and momentum of the mixture have the form

‘%—lm%wﬁ), ‘%»%pz%=0,
dv . 3p
Par ™o — P8 1y
01 =041, f,=04p5, 0f=const, oy -a,=1,

P=p1 = P2 P =P+ (P, — 40/8),

where p, p, and v are the mean density, mean reduced pressure, and mean velocity of the mixture; pg, Pis Pis
and o are the true and mean density, the pressure, and the volume content of the carrier phase; g is the ac-
celeration of gravity; the subscripts 1 and 2 pertain to the parameters of the liquid and the gas, respectively.

The equations of the inflow of heat to the phases can be written in the form

0
du,  Uaps dp2 ‘ .
Py = -;g_—d_t +ng, T;=const, (1.2)
where u, is the internal energy of the gas; q is the intensity of heat exchange between phases per bubble; n is
the number of bubbles per unit volume of the mixture; T is the absolute temperature,

In accordance with assumption 5 we assume that the liguid is incompressible, and as the equations of
state of the second phase we take the equations of state of a calorifically ideal gas

pl=const, p,=(7—1)cvopsTs, Uy =rcysT,, 1.3)
where v is the adiabatic index; cy, is the specific heat of the gas at constant volume.
By virtue of the adopted assumptions 2 and 3, thefollowing equations are valid:

0383 = const, o, = n8*n/0. (L.4)

The intensity of the heat exchange between an individual bubble and the liquid will be taken as proportional
to the difference in temperatures of the phases:

g = n8P(Ty — Ty) = adhy Nu (T — T,)(Nu = B6/h,), (1.5)

where 6 is the bubble diameter; 8 and Nu are the coefficient of heat exchange between phases and the Nusselt
number; A, is the coefficient of thermal conductivity of the gas.

The system of equations (1.1)-(1.5) is closed if the conditions of codeformation of the components of the
mixture are assigned. The Rayleigh—Lamb equations [13, 14] are usually used as such conditions for a liguid
containing bubbles. It is known, however, that these equations were obtained in application to the oscillations
of a single bubble located in an unbounded liquid. If the pulsating bubble is not alone (is in the vicinity of an
enscmble of other bubbles), then one can not get by without allowance for their influence on the dynamics of
its radial motion. The appropriate corrections to the Rayleigh equation for the "gas content” can be cbtained
within the framework of a cell model of the medium, analogous to the corresponding model in the kinetic theory
of dense gases.

We will be confined to the consideration of cells of spherical shape with bubbles located at their geo-
metrical centers. We will assume that disturbances whose sources are located outside the ecells do not affect
the flow of liquid within them (and vice versa). We have

(672R) - g, @ = —wd4r, v = wWO*/4r?,

where R is the radius of an equivalent cell; ¢ and v are the potential and velocity of the radial motion of the
liquid, described by the Cauchy—Lagrange integral

o
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We introduce the mean macroscopic pressure in the liquid:

R .
Py = 3( { przdr) /(R3 — (8/2)%).
6/2

Integrating (1.6) over the volume of a cell and allowing for the viscosity of the liquid, we obtain the fol-
lowing refined condition of codeformation of the phases (the equation for the pulsating motion of a bubble in the
mixture):

:2(p2—p1—40/6) 86 =
03 ’ 1.7

91=3 (052 - az)/2a1, Py = (“ (2 4 op) — 3“2)/051’

where ¢, and @, are unknown correction factors allowing for the influence of the finiteness of the volume content
of bubbles on the character of their pulsating motion. They are proportlonal to a1/ 3 in order of magnitude, and
they can prove significant at high enough volume contents of gas (x; 2 1-3%). As o, —~ 0 we have ¢, ¢, — 0 and

Eq. (1.7) changes into the ordinary Rayleigh—Lamb equation.

51— o) 5+ 30— pw + 16w

§2. For the numerical modeling on a computef of the nonsteady wave processes in liquids containing gas
bubbles, we change to the following dimensionless variables and parameters:

P; =pilpy V =v/ay, o= P/P?os (Dg = pg/P?oﬁ 8; = Ti/To,
T=1tay, C,=cysTy/a’, v, =106v/ay, 0= 4d/pg, @.1)
ﬁ* =6 Nu k,/pggc‘rzﬁga*,
== W/l (pn P10 (0), a; = Pofp(i)o, To="Ty= Tzo)-
Following the concept of [10], we transform the initial system of differential equations (1.1}, (1.2), (1.7)
to a form convenient for integration. Instead of the Eulerian coordinates (x, t) we use the Lagrangian coordi-
nates (r, 1), since they are more convenient for the solution of problems of this class within the framework of

the one-velocity model constructed. In the variables (2.1) the closed transformation of the system of equations
for the description of nonsteady waves in a liquid containing bubbles in the Lagrangian coordinates has the form

P 7 - d w
%zri: - %% aa—r: — 603 Ep‘aT_—[(l — 4y +30) W2 — % W/8 + 2(P, —P —o/8)/au], 5 = 6@, L5,
oD Wd:o 86 we
FT=—6%", T —6(1—y) 5t +B,8(1—86y),
owjor=[2(p,— P — a/es)/o;1 —3(1 — @) W2 — v, W/8)/6 (1 — 9y,
8d/0t = 2W, 2.2)
Py=Cy(y — 1) D26, o= (1 —D)/(1—D3), @3 =D585/8%
o =1—a,,

§=3 (aél"s‘ - “z)/zals ¢ = [aéla (2 4 ay) — 30‘:]/“1-

1t consists of six differential equations, each of which contains only one derivative with respect to one
of the coordinates (r or 7). The first two equations of the system serve for the determination of the reduced
pressure and velocity of the mixture at an arbitrary time from the known fields of the remaining parameters;
the other equations describe the laws of variation of the parameters of the Lagrangian particles of the medium
with time.

For the numerical integration of the system (2.2) we divide a volume of the medium defined by the points
Ty, Ty . . ., Iy into n material particles: the values of all the unknown functions will be determined at the points
r=ri(i=1, 2,...,n). Then the last four differential equations in partial derivatives of the variables &, ®,,
W, and 6 with respect to time change into 4n ordinary differential equations, for the numerical integration of
which it is convenient to use the modified Euler —Cauchy method [15]. To determine the values of the pressure
P at the points r = rj at each fixed time one must solve the boundary problem for the first differential equation
of (2.2) with the following conditions at the boundaries of an isolated volume of the mixture (r = 0, r = 0):

r =0 P, t) = Pyt) or 8P/3r(0, ) = %o(7),
r=1P(,1) = Pt) oo aPlor(l, 1) = 3,(v).
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It is expedient to use the trial-run method {16] to solve this problem. We note that the velocity of the
medium enters only into the second equation of (2.2), so that is not obligatory to calculate it at each step of
the integration in time.

§3. The nonsteady wave processes in a 50% solution of glycerine in water containing gas bubbles (air or
belium) were modeled numerically. We studied the basic laws of the evolution of the structures of nonsteady
shock waves, using the following values of the thermodynamic parameters of the phases (p, = 1 bar, T; = 300°K)

liquid: Qg = 1126 kg/m’, v, = 0.75-107% m”sec;
ai;  y=1.4, pyp=121kym’, &, =0.023 kgn/ (sec’ -deg),
eye = 716 m¥ (sec?.deg),

helium:  y = 1.66, 090 = 0.16 kg/m®, A, = 0.151 kgm/ (sec® - deg),
cyq = 3128 mz_/(secz-deg).

It was established that the properties of the evolution of a shock wave in a bubble medium depend strongly
on the effects of thermal dissipation. In performing concrete calculations one must successively allow for the
influence of the parameters of the mixture, the thermophysical properties of the gas and the bubbles, and the
intensity of the waves on the parameter Nu of internal heat exchange. This allowance can be made within the
framework of the recommendations of [8] for a steady-state analysis. In accordance with them the parameter
Nu and the coefficient of heat exchange 3 between the phases under the conditions of pulsating motion of the
bubbles are determined by the relations

Nu == 6/(;125*)1/27 g= ?‘z/'(hat*)uzv hy = ve/'CV?,Pgs (3.2)
18y/a, (3(vpe/po — IN? < 1y << 18/, (3(po/py — D)2,

where t, is the characteristic time of pulsations of the bubbles. These very equations were used to determine
Nu in the numerical experiments conducted. The calculations showed that in water—air mixtures with a bubble
size on the order of 1 mm (py = 1 bar) the structure of sufficiently weak waves (pg/py < 1.4) evolves from an
oscillating to a monotonic structure. The structure of stronger wavest (pg/ py 2 1.4) approaches an extreme
oscillating configuration in the course of evolution. The evolution of waves in mixtures of bubbles with liquids
of moderate viscosity [4, 5, 9] is due to the effects of heat exchange between phases and of the transfer of the
kinetic energy of radial motion into neighboring volumes of the mixture due to the pressure disturbance (but
not to the effects of viscosity in the relative motion of the phases, as asserted in [9]). As an example, in Fig. 1
we present profiles of the pressure and radial velocity of bubbles at different times in a shock wave of intensity
Pe/ Po = 1.13 propagating through a mixture with the following parameters: py = 1.045 bar, a, = 1.7%, 8y = 2.5
mm; curve 1) t = 5; 2) 15; 3) 30 msec. It is seen that the steady configuration of this wave is monotonic and is
formed at a distance of about 3 m in a time on the order of 30 msec.

Calculations were made in order to study the influence of the initial pressure p; of the mixture on the
process of evolution of the structures of shock waves. We examined the motion of shock waves of the same
dimensionless intensity p,/ p, in the same mixtures when the pressure p, was varied in the range of 0.1-10
bar. It was established that an increase in p, leads not only to an increase in the wave velocity (the wave veloc-
ity varies in proportion to pé/ 2 [81), but also to an increase in the amplitudes and lengths of the oscillations in
the front. The latter is connected with the fact that the intensity of thermal dissipation in the process of heat
exchange between phases decreases with an increase in pressure, by virtue of the fact that the characteristic

TThe propagation of very strong shock waves (pe/ py ~10%-10%) can be studied within the framework of models
of media with second viscosity [17].
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dimensionless parameter 4 of heat exchange [see (2.1)] is proportional to py3/4 | 0~ Dyr @x ~ D /2 gy bt /2
Nu ~pi/* (see (3.2)),. 5o that B ~ p;¥/4].

The results of the calculations are illustrated in Fig. 2, where we present the pressure profiles in non-
steady shock waves of intensity pe/ py = 1.3, formed 6 msec after their initiation by a piston moving with a
constant velocity in a mixture with ayy = 2.5% and 63 = 3 mm. Curve 1) py = 0.1; 2) 1; 3) 10 bar.

We analyzed the properties of the reflection of nonsteady shock waves from rigid walls. As an example,
we solved the problem of the motion of a wave initiated at the boundary of an isolated volume of the mixture
with a pressure p; = 1 bar through the instantaneous increase of the pressure at the boundary to pg = 1.3 bar.
We: calculated the process of reflection of the wave from a wall located at a distance of 1 m from the point of
initiation. The results of the calculations for mixtures with ay; = 1% and §5 = 3 mm and §, = 1 mm are pre-
sented in Fig. 3 in the form of pressure oscillograms "recorded" at a distance of 0.25 m from the wall (curves
1 and 2) and at the wall itself (curves 3 ard 4). Curves 1 and 3 are 6, =3 mm and 2 and 4 are 1 mm; the equi-
librium pressure behind the reflected wave is marked by the letter e on the ordinate. It is seen that the lengths
of the relaxation zones decrease with a decrease in bubble diameter. At a bubble size of 1 mm the waves have
almost monotonic structures.

It is known that the reflection of low-intensity shock waves (when the compressibility of the liquid com-
ponent of the mixture can be neglected) takes place in accordance with the law

PZe/Po = (pelpo)21

where pe and p,e are the equilibrium pressures behind the incident and reflected waves, respectively. In ex-
periments on shock tubes, however, the above-mentioned p,e cannot always be recorded because of the spe-
cifics of the experiment itself. If the length of the relaxation zone of the incident wave is large, thenthe rare-
faction wave from the high-pressure chamber of the shock tube can reach the opposite wall before the time
of establishment of the equilibrium pressure. Then the maximum recorded pressure p« at the wall will be
lower than its expected equilibrium value. :

Thus, the px recorded in the experiments can depend on a whole series of factors: the initial size of the
bubbles, the thermophysical properties of the gaseous phase, the intensity of the wave, the presence or ab-
sence of effects of breaking up of bubbles, etc. Other conditions being equal, the length of the high-pressure
chamber of the shock tube can also affect the value of px. With a sufficiently intense incident wave the bubbles
break up, and the extent of the relaxation zone (diffuseness of the profile) of the wave is sharply reduced. In
this case the maximum equilibrium pressures behind the reflected waves are able to be established, as a rule,
before the arrival of the rarefaction waves. Inthe case of the absence of breaking up of the bubbles in the wave
the situation is greatly altered, since the diffuseness of the incident wave front grows strongly.

We made calculations in application to the experimental data of [4, 5, 9]. We studied the evolution of
waves of intensity pe/py > 1 + 2a 4. The analysis of [9], carried out without allowance for the effects of ther-
mal dissipation in the radial motion of the bubbles, showed that steady waves of such an intensity must have an
oscillating structure. Waves with an intensity Pe/ Py > 1 + 2a5g observed in the experiments actually were os-
cillating waves. In this connection the hypothesis was advanced in [8] that these were oscillating waves only
by virtue of their nonsteadiness (it was impossible to observe steady wave configurations under the experi-
mental conditions of [4] because of the insufficient length of the shock tube). The results of the calculations
of the process of evolution of nonsteady waves confirmed this hypothesis. In Fig. 4 we give an example of a
calculation of the evolution of the pressure profile in a wave of pe/ py = 1.32, carried out in application to the
experimental conditions of [4]: p; = 0.902 bar, a,y = 2.5%, and 6y = 0.28 mm. It is seen that a monotonic wave
structure is realized at a distance of more than 3 m (in the experiments of [4] the detectors were located at
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distances of less than 1.6 m from the point of initiation of the waves and therefore only nonsteady wave con-
figurations were recorded). An analysis of the aggregate of experimental data of [4, 6, 9] shows that the major-
ity of the results obtained pertain to nonsteady waves, so that their correct analysis can be carried out only
with the enlistment of the nonsteady theory.

We studied the influence of the thermophysical properties of the gas bubbles on the process of evolution
of the structurcs of the shock waves. It was established that the thermophysical properties of the gas can
strongly affect the characteristic time of thermal relaxation and, in this connection, the development of the
evolutionary processes as a whole. Let us trace this influence on the example of two gases, air and helium,
having considerably different thermophysical properties [see (3.1)]. In accordance with (3.1) and (3.2) the di-
mensionless coefficients of heat exchange S+, and B«h of air and helium with the liquid under the conditions of
a pulsating motion of the bubbles are connected by the relation

ﬁ*h =4 3.56*3_.

For just this reason the intensity of thermal dissipation must be greater in mixtures containing helinm
bubbles than in a mixture containing air bubbles: accordingly, other conditions being equal, the rate of forma-
tion of monotonic wave configurations is also greater. The results of the calculations and their comparison
with the experimental data confirm this conclusion. As an example, in Fig. 5 we present (at the same scale)
calculated and experimental{ oscillograms of the pressure in shock waves T (a, b) and If (c, d): I (recording at a
depth of 0.82 m from the surface of the mixture; the gas is helium): pe/ px = 1.3, psx = 1.09 bar, ayw = 1%, 6 =
1.5 mm; II (recording at a depth of 1.59 m from the surface of the mixture; the gas is air): Pe/Px = L18, ps =
1.09 bar, ayy ~ 1%, 6x = 1.9 mm., Here the values of the parameters at a depth of 0.82 m are marked by an
asterisk. It is seen that the shock wave in the mixture containing helium bubbles already has a monotonic
structure at a depth of 0.82 m, whereas a weaker wave in a practically analogous mixture containing air bubbles
still has a clearly expressed oscillating structure at the considerably greater depth of 1.59 m. The calculated
oscillograms are in satisfactory agreement with the experimental ones.

The calculations made and their comparison with experimental data show that the constructed model of
the dynamic behavior of a mixture can be used successfully for an adequate description of nonsteady wave pro-
cesses in liquids containing gas bubbles.

LITERATURE CITED

1. G. K. Batchelor, "Compression waves in a suspension of gas bubbles in a liquid," in; Mekhanika [Peri-
odic Collection of Translations of Foreign Articles], No. 3 (109) (1968).

2. V. K. Kedrinskii, "The propagation of disturbances in a liquid containing gas bubbles," Zh, Prikl. Mekh.
Tekh. Fiz., No. 4 (1968).

3. A. Crespo, "Sound and shock waves in liquids containing bubbles," Phys. Fluids, 12, No. 11 (1969).

L. Noordzij, "Shock waves in bubble—liquid mixtures," Phys. Comm., 3, No. 1(1971),

5. S. 8. Kutateladze, A. P. Burdukov, V. V. Kuznetsov, V. E. Nakoryakov, B. G. Pokusaev, and I. R.
Shreiber, "On the structure of a weak shock wave in a gas—liquid medium," Dokl. Akad. Nauk SSSR,
207, No. 2 (1972).

-

TExperiments of V. E. Nakoryakov and colleagues of the Institute of Thermophysics, Siberian Branch, Acad-
emy of Sciences of the USSR.

209



6. B. E. Gel'fand, S. A. Gubin,; B, 8. Kogarko, and S. M. Kogarko, "Compression waves in a mixture of
liquid and gas bubbles," Dokl. Akad. Nauk SSSR, 213; No. 5 (1973).

7. 8. S. Kutateladze, V. E. Nakoryakov, V. V. Sobolev, and I. R. Shreiber, "Dynamics of shock waves in
a liquid containing gas bubbles," Zh. Prikl. Mekh, Tekh. Fiz., No. 5 (1974).

8. R. I Nigmatulin and V. Sh. Shagapov, "The structure of shock waves in a liquid containing gas bubbles,"
I1zv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1974).

9, L. Noordzij and L. Van Wijngaarden, "Relaxation effects caused by relative motion on shock waves in
gas-bubble / liquid mixtures," J. Fluid Mech., 66, 1 (1974).

10. A, A. Gubaidullin, A, I. Ivandaev, and R. I. Nigmatulin, "Nonsteady waves in a liquid containing gas
bubbles," Dokl. Akad. Nauk SSSR, 226, No. 6 (1976).

11, R. L Nigmatulin, A. 1. Ivandaev, and A. A. Gubaidullin, "Numerical modeling of wave processes in
two-phase disperse media," in: Procecedings of Third All-Union Seminar on Methods of the Mechanics
of a Continuous Medium [in Russian], Izd. Vychisl. Tsentr Sibirsk. Otd. Akad. Nauk SSSR, Novosibirsk
(1976).

12, B. E. Gel'fand, S. A. Gubin, S. M. Kogarko, S. M. Simakov, and E. I Timofeev, "Destruction of
air bubbles in a liquid by a shock wave," Dokl. Akad. Nauk SSSR, 220, No. 4 (1975).

13. 8. S. Iordanskii, "On the equations of motion of a liguid containing gas bubbles,” Zh. Prikl. Mekh, Tekh.
Fiz., No. 3 (1960). ‘

14. B. S. Kogarko, "On one model of a cavitating liquid," Dokl. Akad. Nauk SSSR, 137, No. 6 (1961).

15. B. P. Demidovich et al., Numerical Methods of Analysis [in Russian], Nauka, Moscow (1967).

16. S. K. Godunov and V. S. Ryaben'kii, Difference Schemes [in Russian], Nauka, Moscow (1973).

17. G. M. Lyakhov, Principles of the Dynamics of Blast Waves in Soils and Rocks [in Russian], Nedra,
Moscow (1977).

ACTION OF A PRESSURE PULSE ON A CAVITY
IN A VISCOUS LIQUID

N. A. Grigor'ev, G. S. Doronin, UDC 532.52.01
and V. L. Odinokii

The case of the collapse of a cavity under the action of a constant external pressure p, was analyzed in
[1]. There is a class of problems, however, in which the external action consists of brief pressure pulses.
Such a situation occurs, for example, in the impact loading of porous solids.

Suppose that there is an empty spherical cavity of radius r; in a viscous incompressible liquid with a
density p. The pressure py(t, 7) at infinity (far from the cavity) is an arbitrary function of timeat0 =t =<7
and is reduced to zercatt > 7.

The motion is spherically symmetric and the Navier —Stokes equations'describing it have the form

au v du du 1 8p _
27 =0 Ftugtoa=0 m

where u(r, t) is the velocity; p(r, t) is the pressure.

At the surface of the cavity a normal stress orr is absent (the cavity is empty), and since gpp = —p +
2ndu/dr, we have p, = 2n(du/ar),;. Here and later the values of quantities at the boundary are marked by the

index 1; n is the coefficient of dynamic viscosity.
The second boundary condition will be
P = Px(t, T) at r = oo.

From the first equation of (1) we obtain u(r, t) = u;r}/r?
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